

Unix 3
Shell Programming

Workbook

December 2016
Document Reference: 2630-2016

If you require this document in an alternative format, such as large print,
please email is.skills@ed.ac.uk.

Copyright © IS 2016

Permission is granted to any individual or institution to use, copy or redistribute this document
whole or in part, so long as it is not sold for profit and provided that the above copyright notice
and this permission notice appear in all copies.
Where any part of this document is included in another document, due acknowledgement is
required.

Contents
1. Shell Programming
Section 1 ... 1
The Philosophy ... 2

Task 1.1 Find commands that are scripts ... 2
The Bourne Shell ... 3

Task 1.2 Compare shell and nano sizes ... 3
Revision – Shell metacharacters .. 4
Revision - Shell quoting ... 5
Revision - redirection ... 6
Revision - command substitution .. 8
Revision- Regexps and Filters.. 9
What Is A Shell Script ? ... 11
Comment and #! .. 12

Task 1.3 Create count-users script ... 12
Task 1.4 Modify count-users script ... 12

Shell variables ... 13
Shell variables ... 14
Default Values ... 15
Command line arguments .. 16

Task 1.5 Create numargs script ... 17
Accessing all positional parameters .. 18
Set .. 20

Task 1.6 Create last-login script ... 20
Task 1.7 Create Percentage Script... 22

2. Shell Programming
Section 2 ... 23

Task 2.1 Examine exit status $?... 25
if example ... 27

Task 2.2 Create doineed script using if statement ... 27
No shell negation ... 28
Nesting if statements - ok ! ... 29
test command.. 30
test conditions ... 31

Task 2.3 Create filetype script using test .. 32
More test ... 33

Task 2.4 Create grade script .. 34
case statement .. 35

Task 2.5 Create inspect-file script .. 37
Task 2.6 Bonus exercise:... 37

Good looking code... 38
3. Shell Programming
Section 3 ... 39

mailto:is.skills@ed.ac.uk

Looping in the Shell.. 40
for loop .. 41
for loop examples... 42

Task 3.1 Create create-logs and date-to-logs scripts 43
More for loop examples .. 44

Task 3.2 Create a numfiles-in-dirs script ... 45
Final for loop example .. 46
While loop ... 47
while loop examples ... 48

Task 3.3 Create a countup script from blast-off ... 50
Until loop ... 51

Task 3.4 Modify wait-for-results script to use until loop 51
Loop control ... 52
read... 54

Task 3.5 Create sumit script ... 56
4. Shell Programming
Section 4 ... 57

Task 4.1 Run eval-input script .. 58
Shell Functions .. 59
Modifying variables in functions .. 60
prompt_and_get... 62

Task 4.2 Examine and run function example scripts .. 63
Signals & Traps ... 64

Task 4.3 Examine trap-test script ... 65
Shell Debugging Options .. 66
Common bugs ... 67

Task 4.4 Locating bugs in scripts .. 67
Conclusions ... 68

1

 0

1. Shell Programming

Section 1

2

1 Shell Programming

The Philosophy

• Unix is a rich programming environment
• small tools for specific tasks
• shell is glue!

Unix history
Unix was originally developed in AT&T Bell Labs in the late 1960s. It was written at that
time as a development environment for programmers within AT& T . As such, a
programmable command language which interfaces to the many system tools was at the
heart of Unix's design.
Small + shell = big
The philosophy for program development under Unix at that time was small tools for
specific tasks. These small tools could be harnessed using the shell's input/output
redirection mechanisms (eg pipes) to form larger tools. For example, by providing a
"sort" command the output of any other command can be ordered as required by piping
its input into "sort". So the task of sorting a command's results is done by a tool whose
only task is to sort. The original command does not need to know how to sort. As Unix
has developed over the years many tools have appeared which rebel against this
philosophy; no one would call GNU emacs a small tool! This philosophy is however still
very important.

Sticky Shell
The shell provides the glue to construct larger commands from more specific tools. The
same shell which is used as an interactive command

interpreter is the shell used as a programming language. Not only does the shell provide
the input/output redirection which allows these tools to be linked together, it also has a
rich programming syntax. The shell provides variables, conditional expressions (ie if
statements) loops and subroutines,

Task 1.1 Find commands that are scripts
A number of commands available in Unix are shell scripts themselves. Use the "file"
command on a system bin directory to determine a file's contents and pipe its result into
grep to look for the string "commands text", eg
bash$ file /bin/* | grep script
All these commands are shell scripts.

3

 1 Shell Programming

The Bourne Shell

• Why the Bourne shell?
• Bourne shell syntax works for bash and ksh
• Bash (Bourne again shell) available as standard on modern

Linux systems
• Other shells - csh tcsh ...

The Bourne Shell
The shell covered in this course is the Bourne shell. The Bourne shell is the original Unix
shell developed by Stephen Bourne. The other popular Unix shell was the C shell; a shell
which tries to mimic the C programming language syntax. The Bourne shell is available
under all Unix systems and is generally considered to have a much clearer syntax.

Other shells
All Unix shells roughly fall into two camps; those derived from the Bourne shell and those
derived from the C shell. The programming syntax described in this course will work with
those shells in the Bourne shell camp. The most common shells in this camp are the
Korn shell (ksh) and the Bourne again shell (bash) which are the most widely used Unix
shells. The csh camp contains the "tenex "style shells. The Bourne shell programming
syntax will not work with the C shell or those derived from it, though the concepts
described in this course are still relevant.

Any references to "the shell" in this document are thus references to the Bourne shell.

Task 1.2 Compare shell and nano sizes
The Bourne shell is stored in the file /bin/sh. Do an ls -l of this file and look at its size.

A version of the nano editor is stored in /usr//bin/nano. Again, do an ls -l and look at its
size.

Though relatively small the Bourne shell is very powerful.

4

1 Shell Programming

Revision – Shell metacharacters
• Asterisk * any sequence of characters
• Square brackets [abc] the specified range
• Tilde (bash only) ~ home directory
• Dollar symbol $ dereference variable

Shell metacharacters
Shell metacharacters are special characters that provide a short-hand for specifying
filenames and, as described later, matching strings.

Asterisk
The asterisk matches any string of characters including the empty string.

For example -

a* will match any string starting with an "a" including the string "a" itself.

Square brackets
Square brackets indicate sets of characters and will match a single character which is in
the set. Two characters separated by a dash match any character lexigraphically
between the pair. More than one range can be used within the square brackets.

For example:

[abc] will match any of a b c

[a-c] will match any of a b c

[a-cA-c] will match any of a b c A B C

Square brackets are most commonly used with asterisks to match strings starting with a
specific range.

For example: [a-cA-C]* will match any string starting with a b c A B C

Tilde
The tilde character will match the specified user’s home directory or if no user is
specified, the home directory of the user executing the command. Note that this facility is
only present when using the bash shell and not when using the standard Bourne shell.

For example: ls ~barney will attempt to list the contents of the “barney” user’s home
directory.

Dollar symbol
The dollar symbol will expand (dereference) the value of a variable.

For example: echo $PATH will output the contents of the PATH variable to the screen.

5

 1 Shell Programming

Revision - Shell quoting

• Quoting - protect characters with special meaning to shell
• Backslash \ shields (escapes) one character
• Single quotes '...' shields all enclosed characters (except ')
• Double quotes "..." shields enclosed characters except for

$ ` " \

Quoting
Quoting is used to shield the shell's metacharacters from interpretation.

Backslash
The backslash will shield any single character it precedes.

Single forward quote
All characters enclosed between a pair of single forward quotes are shielded - apart from
the ' character itself!

Double quotes
All the characters enclosed between a pair of double quotes are shielded except for $ ` \
and "

6

1 Shell Programming

Revision - redirection

• Pipes |
• Output redirection

o >
o >>

• Input redirection
o <

• Here Documents
<< EOF
text

 EOF

Pipes
Pipes join the output of the last command to the input of the next, eg
bash$ who | wc -l

would pipe the output of the "who" command into the wc command, and so counts how
many users are logged in.

Output redirection
The > character sends the output of the command into a named file.

For example -
bash$ who > wholist

will create or overwrite a file which contains a list of who is on the system.

The >> character appends the output of the command into the named file.

For example -
bash$ who >> wholist

will append a list of who is on the system to the end of the file wholist.

Input redirection
The < character takes its input from the named file.

For example-
mail tony < /etc/motd

will send the message of the day (/etc/motd) by email to user tony.

7

 1 Shell Programming

Here Documents
The text between the delimiters is used as the standard input of the command. Between
the delimiters shell variable expansion and command substitution are performed.

For example,
cat << ENDSTRING
You are about to enter an interactive session which will modify the
behaviour of this system to suit your use.
ENDSTRING

will display the text between the delimiters to the screen.

Here documents are useful for displaying known multi-line text to the screen without
having to create a separate file to contain the text.

8

1 Shell Programming

Revision - command substitution

• Command substitution
o `command`

echo “Today’s date is `date`”
Today’s date is Thu 7 Jul 2016 16:53:20 BST

• $(….) in bash only
echo “Today’s date is $(date)”
Today’s date is Thu 7 Jul 2016 16:53:31 BST

Command substitution
Commands enclosed by backquotes are run by the shell and the text enclosed by and
including the backquotes are replaced by the result of the command. Newlines in the
output from the command are replaced by spaces.

The bash shell has an alternative syntax of $(command). This can make nesting multiple
layers of command substitution easier and more legible.

For example-
bash$ echo "Next year will be $(expr $(date +%Y) + 1)."

Next year will be 2017

In this example we’re using the date +Y command to get the current year then using the
expr command to add 1 to the result.

The shell
Command substitution is good for presenting arguments to commands eg
bash$ ls -l `which ls` -r-xr-xr-x 1 root bin 100440 Feb 17 1994 /bin/ls
-rwxr-x--x 1 root root 144881 Jan 13 1992 /usr/local/gnu/bin/ls

or for assigning shell variables, eg
bash$ Date=`date` bash$ echo $Date Thu Jun 8 12:00:28 BST 1995

The shell actually evaluates the commands between the backquotes by executing a new
shell and so any shell constructs can be used within the backquotes.

For example -
bash$ Numusers=`who | wc -l` bash$ echo $Numusers 250

9

 1 Shell Programming

Revision- Regexps and Filters

• Regular expressions identify text patterns in files
• Filters operate on a stream of text
• grep,awk,sed,sort are examples of filters
• Filters can be combined using pipes “|”

Filters
Filters accept text from standard input and output it via standard output which means
they can be combined together using redirection operators. This is a good example of
the Unix philosophy of having small tools that can be joined together to perform a more
complex task. The filter commands are discussed in greater detail in the “Power UNIX”
section of the UNIX 2 course booklet.

grep
Grep is the General Regular Expression Parser and it will print any line in a file which
matches a given regular expression e.g.
bash$ grep ‘^Celtic ‘ results

will print out any lines starting with the word “Celtic” in the file results.

Useful flags to grep are “-i” for a case-insensitive search and “-v” to negate the search
result i.e. in the above example it would print all the lines that don’t start with the word
“Celtic”.

awk
Awk is a full programming language in its own right and is commonly used on working
with columns of data like you would get in a spreadsheet or output from a number-
crunching computing job. Common tasks performed using awk are transposing columns,
printing only specified columns and performing arithmetic on columns e.g. summing
values in a column to calculate the total.
bash$ awk –F, ‘/^[Tt]oast/ {print $1 “costs” $NF }’ menu

10

1 Shell Programming

sed
Sed is the Stream Editor and operates on a stream of text. A stream can be generated
from a file or by upstream filters in a pipe. Common uses are deleting lines from a
stream:
bash$ sed '/betty boo/,$d' chart

or using regexes (regular expressions) to substitute patterns in a stream
bash$ sed 's/^fred/barney/' flintsone

sort
The sort command is used to sort a file by ASCII or numerical order. As it is a filter it can
also be used to sort the output from upstream filters in a pipe.
bash$ sort –t: -n –k2 bills

Filters in Pipelines
Filters can be combined in a pipeline to perform potentially complex manipulation on data
streams.
bash$ who | grep –v 'hacker' |awk '{print $1 is trustworthy}'

11

 1 Shell Programming

What Is A Shell Script ?

• normal text file containing shell commands
• should be executable and readable
• created using a suitable text editor e.g. nano, vi, emacs

o You’ll be doing this a lot in today’s exercises!

Shell Script
A shell script is just a normal Unix file which contains Unix and shell commands. The
simplest shell scripts simply group together commonly used sequences of commands.

More complex scripts use the shell's programming syntax to perform more advanced
tasks.

Shell scripts are not compiled but interpreted. This means that each time they are run a
shell is executed to read the file and run the commands it contains. Languages which are
compiled, such as C, will produce a compiled code which will run faster than an
equivalent shell script.

However, since shell scripts usually use other Unix commands to achieve their task, and
are much easier to write, this usually does not matter. As we shall see the shell is good
for some things and not so good for others.

Execute Bit
Like any program under Unix a shell script must have the execute permission bit turned
on. To do this use
bash$ chmod +x script-name

In fact, since the shell actually reads the script each time it is executed you need to turn
the read permission bit on as well. In general when you create a file under Unix you are
given read and write permission on the file, so you need only add execute permission.

Text Editors
As they are essentially just text files, shell scripts are usually created using a text editor.
There are a variety of text editors available on most Unix systems (emacs, vi, nano). We
recommend “nano” unless you are an experienced Unix user and are comfortable with
more advanced editors like emacs or vi.

12

1 Shell Programming

Comment and #!
• # is comment character
• #!command - specifies command interpreter

#!/bin/sh
echo "Hello world"

Comment Character
The comment character in the shell is the #

Any text between the # character and a newline is ignored by the shell. A comment
character will only be recognised as the first character in a file or following a space, tab
or newline. The comment character can of course be quoted to escape its meaning. As
with all programming languages it is very important to comment your code!

Command Interpreter
The special directive #! as the first two characters of a file tell Unix that the rest of the line
identifies the program which should be used to run this file. So to make sure a script runs
under the Bourne shell use
#!/bin/sh

Note that this special directive is only recognised if it is the first two characters in the file
and so there should be no spaces before the #. There can however be spaces between
the ! and the name of the interpreter.

Task 1.3 Create count-users script
Write a shell script, called count-users, which counts how many users are on the system.

(Tip – The who command shows all the users on the system - one per line. The wc -l
command prints how many lines it had as input).

Task 1.4 Modify count-users script
Modify your script from exercise 3 above to use the date command to display the result
as follows. (Tip - use command substitution to print the date and number of users on one
line.)
At Wed Jan 18 17:58:43 GMT 1995 there are 100 users on the system

Change the command interpreter from /bin/sh to /bin/cat - what happens ?

13

 1 Shell Programming

Shell variables

• Set
o Variable=value

• Dereference
o $Variable

• Variable Names
o Must start with an alphabetic character
o May contain a-zA-Z0-9_
o Are case sensitive - FOO Foo and foo are different

Shell Variables
Using shell variables should already be a familiar operation, eg setting your terminal type
is done by setting the TERM shell variable. A shell variable is simply set by equating it to
a value. Note that there should be no spaces either side of the = and if the variable's
value contains spaces or tabs it should be quoted for example -
bash$ Greeting="Hello Tony"

A variable's value is obtained by prefixing it with the $ character, for example -
bash$ echo Greeting
Greeting
bash$ echo $Greeting
Hello Tony

Variable Names
Variables names may comprise upper and lower case alphabetic characters, digits and
underscores. A user defined variable name cannot start with a digit. As with most things
in Unix variable names are case sensitive, e.g. FOO and foo are two distinct variables.

Of course the variable's value can be any string of characters!

Special shell variables
Some variables have special significance to the shell. For example, the PATH variable is
used by the shell to contain the list of directories to search for commands. Other
variables have special meaning to other Unix utilities, for example the TERM variable
contains the current terminal type.

14

1 Shell Programming

Shell variables
• no declaration of variables
• variables don't have types
• constants via readonly
• unassigned variable’s value is NULL

No declaration, no type
Shell variables do not need to be pre-declared; in fact there is no way to declare a
variable. Shell variables are created by simply assigning them. Shell variables do not
have a type associated with them. Some programming languages require the type of
data that the variable will hold to be declared. The shell considers all variables to contain
strings of characters and so no type information is required.

Constants
A constant, i.e. a shell variable which cannot have its value changed, can be created
using the readonly command. It takes as arguments shell variable names and marks
them as variables whose values cannot be altered. Trying to assign a value which has
been marked as readonly causes an error and the shell script will exit.

For example -
Lyric="Everything is going to be alright"
readonly Lyric

marks Lyric as a readonly variable.

Values of Unassigned variables
The value of an unassigned variable is an empty string which is often referred to as
NULL or the NULL string.

15

 1 Shell Programming

Default Values
• ${var}

o same as $var
• ${var-default}

o If var not set produces default otherwise $var
• ${var=default}

o Same as above only var also set to "default"
• ${var?message}

o $var if var set else print "message" and exit

Default Values
The shell provides a shorthand notation for testing if a variable is already set and
performing some action dependent on that test.

The simplest case is ${var-default} which tests if var is set and if not evaluates to the
string default, with var being left unset. For example consider a shell script which prints a
welcome message but can't be sure that the shell variable Name is set. The ${var-
default} construct could be used to supply a default.

For example:
#!/bin/sh
echo "Hello ${Name-Sir/Madam}, have a nice day"
/usr/local/bin/dosomething

Note that if the default or message string includes spaces or tabs it should be quoted.

The ${var=default} could be used in the above case to also set the Name variable.

For example:
#!/bin/sh
echo "Hello ${Name=Sir/Madam}, have a nice day"
/usr/local/bin/dosomething
echo "Thank you $Name for doing something"

${var?message} is used if var being unset is a critical error and the script must exit. If

message is omitted a standard message is produced. For example, consider an
application called wordprefect which needed a shell variable called WPTERM to be
provided as an argument. The following script would ensure it would not run if WPTERM
was not set.
#!/bin/sh
wordprefect ${WPTERM?"WPTERM not set, cannot run wordprefect"}

16

1 Shell Programming

Command line arguments

• Positional Parameters $1 - $9
• shift n

• $# contains number of arguments

Command line arguments
The command line arguments which are provided to a shell script are available via the
special shell variables $1 to $9. The first argument is available in the script as $1, the
second as $2 until the ninth which is available as $9. These variables are often referred
to as positional parameters.

For example, consider a shell script which looks to see if a friend is currently using the
system.
#!/bin/sh
#tonyon - is tony logged in ?
who | grep tony

This shell script will only look for the user tony. A more useful shell script would be one
which looked for any named user. A simple script to do this would be
#!/bin/sh
#showon - is the specifed user logged in
who | grep $1

Shift
An obvious question is; how is the tenth argument obtained? The shell provides the shift
command which moves, by default, each positional parameter down one place - so $2
becomes $1, $3 becomes $2 and the 10th argument becomes available as $9. Note that
after this shift we have lost $1 so it should be saved to another variable before we shift !

The shift command can also take a number as an argument which specifies how many
places each positional parameter should move. For example, shift 5 moves $6 to $1, $7
to $2 etc ...

How many arguments?
$# is the shell variable which contains the number of positional parameters.

For example, a simple, and pretty pointless, script which printed out the number of
command line arguments is
#!/bin/sh
echo I got $# command line arguments

If this script was called numargs, we could run it like this
bash$ numargs 1 2 3
I got 3 command line arguments

or
bash$ numargs hello there good to see you
I got 6 command line arguments

17

 1 Shell Programming

Task 1.5 Create numargs script
Create the numargs script as above, and play with it.

Write a shell script called exon which turns the execute bit on a file given as an
argument. (Hint chmod +x filename will turn the execute bit on for filename).

18

1 Shell Programming

Accessing all positional parameters

• $* and $@
• "$*" and "$@"
• "$@" wins !
• $$ - shell process id

Accessing all positional parameters
The shell provides two variables which contain all the positional parameters; $* and $@.
When not quoted these two variables are equivalent.

The following shell script uses $* to place the contents of all the files specified on the
command line in a new file called bigfile.
#!/bin/sh
cat $* > bigfile

When quoted, ie as "$*" and "$@", they are subtly different. When $* is quoted is
produces a quoted string of all the positional parameters. When $@ is quoted it produces
a list of quoted positional parameters. This means that when you use "$*" to refer to all
the positional parameters you will lose any special quoting which has been already
provided on the command line. Using "$@" will preserve this special quoting.

Consider the shell script above run with a files called "first file" and "second file". (it is
possible to create files in Unix which contain spaces if you try !).

$* will expand to

first file second file

and so cat will have four arguments !

Using "$*" would give us

"first file second file"

and so cat would have one argument !

Using "$@" will give two arguments

"first file" and "second file"

and would produce the desired result. In short, it generally best to use "$@" to refer to all
positional parameters, and the shell script above would be better written as
#!/bin/sh
cat "$@" > bigfile

19

 1 Shell Programming

$$ process id
Another useful shell variable often used for generating a unique name for a temporary
file is $$, which contains the current process id of the shell. This can be appended to a
filename. The shell's process id will be between two and five digits.

For example:
#!/bin/sh
#ison.tmpfile
who > /tmp/wholist.$$
grep tony /tmp/wholist.$$
rm /tmp/wholist.$$

20

1 Shell Programming

Set

• set - resets positional parameters
• set arg1 arg2 arg3

Set
The set command will reset the positional parameters to arguments it is given. If set was
called as follows
set one two three

$1 would be "one", $2 would be "two" and $3 would be "three".

The other shell variables which refer to positional parameters, eg $# and $@ , and
commands which act on them , eg shift, will now use the positional parameters provided
as arguments to the set command.

set is often used with command substition (enclosing commands in backquotes ``) to split
up the output of a command.

For example :-
#!/bin/sh
timenow:
set the positional parameters to the
output of date
set `date`
The fourth word is the time –
echo The time is now $4

On some systems the date command can actually do this selection for you.

Task 1.6 Create last-login script
Write a shell script which uses set and command substitution to report the time you last
logged in. For example:

bash$./last-login
You last logged in at 09:39

Tips: the "last" command lists all logins to the system, most recent first. You should filter
out all users except yourself, and "head" or "sed" could be used to select the most recent
login. The "whoami" command will return your own username.

21

 1 Shell Programming

Shell Arithmetic
• shell uses expr for integer arithmetic

o num + num addition
o num - num subtraction
o num * num multiplication
o num / num integer division
o num % num remainder

• real arithmetic
o can be kludged using bc or dc
o not pretty !

expr
The shell treats all shell variables as strings. We have to use the expr command
(/bin/expr) to perform arithmetic in the shell. It takes two integer arguments and an
operand and writes the result to standard output. The result from expr is usually assigned
to a shell variable using command substitution.

There must be spaces between the operand and the arguments. Note that since expr
uses * as the multiplication operand it must be shielded in shell scripts (usually using the
\ character) as the * has special meaning to the shell.

For example, here is a shell script which will multiply two arguments:-
#!/bin/sh
#multiply.expr - multiply
#first arg by second
Result=`expr $1 * $2`
echo Result of $1 * $2 is $Result

expr's arguments must be integers: if given non-integer arguments it will not perform the
calculation. (The isanum example script can be used to determine if a given argument is
a number - the constructs used in this script will be explained later in the course).

Real Arithmetic
expr only provides integer arithmetic. It is possible to implement real arithmetic, ie
arithmetic performed on real numbers, using either the bc or dc arithmetic utilities.
Though considered slightly outwith the scope of this course a division would be
performed as follows:-
#!/bin/sh
#divide.bc - divide first arg by
#second
Result=`echo " scale=3 ; $1 / $2 " | bc`
echo Result of $1 / $2 is $Result

Note: The double quotes are required to protect the semicolon which would otherwise be
interpreted as a command separator.

22

1 Shell Programming

Task 1.7 Create Percentage Script
Write a shell script which takes two numeric arguments and calculates what percentage
the first is of the second, e.g.
bash$ percent 1 2 50%

The script should use expr to calculate the percentage and so the result will be rounded
to the nearest whole number.

23

 0

2. Shell Programming

Section 2

24

2 Shell Programming

Exit status
• all commands return an exit status

o zero = success
o non-zero = failure

• man pages describe failure exit statuses
o shell variable $? contains exit status of last command

• exit command returns status from shell-script
o exit 1

Exit status
All Unix commands return an exit status which indicates whether the command has
succeeded or failed. An exit status of 0 indicates success, whilst a non-zero status
indicates failure. Some commands have more than one possible non-zero exit status
depending on the nature of the failure. The grep command returns 1 if it cannot match its
pattern, and 2 if is given an incorrect search pattern or cannot open the specified files.
So in the example below grep can return 0 if the string "beer" is in the file shopping-list, 1
if it is not and 2 if the file shopping-list does not exist.
bash$ grep beer shopping-list

Man page
A command's manual page should have the exit statuses that can be returned listed at
the end, usually under the heading Diagnostics. For example the relevant section for
grep reads :-
DIAGNOSTICS Exit status is 0 if any lines were selected to be printed, 1
if none, or 2 for syntax errors or inaccessible files (even if matches
were found).

$? = exit status
The shell variable $? contains the exit status of the last command executed. In shell
scripts it is often used to test return values. The exit status is sometimes referred to as
the return value.

In a pipeline $? contains the exit status of the last command, so after executing
bash$ who | grep tony

$? contains the exit status of the grep, not the who command.

exit command
exit causes a shell script to terminate and return the specified integer value as an exit
status. It is good practice always to return an exit status from your shell scripts and to
follow the Unix convention of zero for success and non-zero for failure. If exit’s numeric
argument is omitted then the return value of the last command, i.e. $?, is used.

25

 2 Shell Programming

Task 2.1 Examine exit status $?
Run the following commands and look at their exit statuses (use echo $?).
cat /etc/motd

cat /nofile blub

diff /etc/motd /etc/motd

diff /etc/motd /etc/hostz

diff /etc/motd /etc/hosts > /dev/null

26

2 Shell Programming

if statement

if condition-expression
then

execute these commands if condition true
command-list

else
execute these commands if condition false
command-list

fi

Conditional statement
The shell provides the "if/then/else " statement to selectively execute commands
dependent on the result of a condition. If the condition is true then the commands in the
"then" block are executed and if false the commands in the "else" block are executed.
The whole statement is terminated by "fi".

The "else" part of this statement is optional and so statements which just test the
success of the condition can be written using the following syntax :-
if condition

then

 command-list

fi

The condition which the "if" statement tests can be any set of Unix commands. When the
"if" statement is evaluated those commands in the "condition" are executed and if the
return value is 0 the condition is true, non-zero and the condition is false.

27

 2 Shell Programming

if example

#!/bin/sh # ison - is the specified user logged in
if who | grep $1 > /dev/null
then

echo $1 is logged in
exit 0

else
echo $1 is not logged in
exit 1

fi

The ison script
As we have seen before "who| grep user" will test if user is logged onto the system. The
ison script uses the return value of the grep in an "if" statement to present the result in a
more human fashion.

If the specified user is in the list of users currently logged in then the grep will return 0
and the then part will be executed. If the grep returns non-zero, ie the user is not logged
in the else part is executed.

Note that the script returns 0 if the user is logged in and 1 if not, so we can use the return
value of ison in other scripts which need to look for users logged in!

The bit bucket /dev/null
/dev/null is a special Unix file into which output to be discarded can be directed. In the
above script, the return value of the grep is of interest, not the output which it may return,
and so its output is directed to the bit bucket, /dev/null.

Task 2.2 Create doineed script using if statement
Write a shell script called doineed which searches your shopping-list file for a specified
grocery item and prints
"Yes - We are out of <item> - better get some"

if the specified item is in the file or
"No - we still have some <item>"

if not in the file.

There is a sample shopping-list file provided.

28

2 Shell Programming

No shell negation

• No shell negation operator to invert a condition expression
• Instead use : null command in if statements

if condition
then
 :
else
 command-list
fi

No shell negation
The Bourne shell does not provide a negation operator to invert the sense of a
conditional expression. This means there is no way to test the opposite of your
conditional expression.

For example, consider the situation where an action may be required if a user is not
logged in, but no action is required if they are. The conditional expression to test if a user
is logged in is
who | grep user

and since the grep returns 1 (i.e. false) if the user is not in the who list we want to
execute the else part of the if statement and have an empty then part. The shell does not
allow empty command blocks.

The : operator
The shell does provide a null command which simply provides a zero return code, this is
the : command. So the above problem can be solved by writing
#!/bin/sh
send-greeting - write message to
supplied user, if logged in.
if who | grep $1 > /dev/null
then
 # User is logged in - do nothing
 :
else
 # User not logged in - exit exit 1 fi
 # We know user is logged in –
 write $1 < greeting-file
fi
exit $?

Here the action performed if the user is logged in is to write the contents of the greeting-
file to the user's screen.

29

 2 Shell Programming

Nesting if statements - ok !

• Nest if statements to link conditions with logical AND
• Alternatively use elif for logical OR

Nested if Statements and elif's
It is possible to write nested "if" statements in the shell, ie the command block of a "then"
or "else" part can be an "if" statement. However, when there are many nested conditional
statements the code becomes hard to read and the logic unclear. The shell provides the
"elif" statement as shorthand notation for "else if" statements.

Compare ...
if condition1
then
 command-block1 ### executes if condition1 true (condition2 not tested)
else
 if condition2
 then
 command-block2 ### executes if condition1 false AND condition2
 ### true
 else
 command-block3 ### executes if condition1 AND conditiion2 false
 fi
fi
with ...
if condition1
then
 command-block1 ### executes if condition1 true
elif condition2
then
 command-block2 ### executes if condition1 false but condition2 true
else
 command-block3 ### executes if neither condition1 nor condition2 are
true
fi

30

2 Shell Programming

test command
• tests

o file attributes
o string comparisons
o numeric comparisons

• returns zero if test if true, non-zero otherwise
• syntax

o test condition
• used in if statements and loops

Test command
The shell provides the "test" command to check a condition. It returns zero if the
condition is true and non-zero if the condition is false. The test command provides a
mechanism for checking file attributes and performing string and numeric comparisons.

It has the general syntax
test condition

For example the test condition to check if a file exists is
test -f file

test is most often used with if statements and loops, for example -
#!/bin/sh
cat.silly silly shell script to test
for a file's existence
and cat it if it does
if test -f $1
then
 cat $1
else
 echo File $1 does not exist
fi

31

 2 Shell Programming

test conditions

• the test command can evaluate conditions for
o file attributes
o strings attributes
o numeric comparisons

test syntax
The argument provided to test can be a shell variable or a literal string. There must be at
least one space between the test command, the operator and the argument(s). The test
command does not check that its arguments are valid, for example you can perform
numeric tests on string value (with unpredictable results !). test will produce an error if a
required argument is missing, most often this happens when an unset shell variable is
used in a "test" statement.

Testing file attribute
• test -f file ### "file" exists and is a regular file

• test -d file ### "file" exists and is a directory

• test -r file ### "file" exists and is readable

• test -w file ### "file" exists and is writable

• test -x file ### "file" exists and is executable/searchable

• test -s file ### "file" exists and has a size greater than zero

"file" above actually refers to any filesystem object, eg file, directory, named pipe, block
special device, etc ...

Testing strings attributes
test str ### str is not null

test str1 = str2 ### str1 equals str2

test str1 != str2 ### str1 not equal to str2

32

2 Shell Programming

Testing numeric comparisons
test num1 -eq num2 ### true if num1 and num2 equal

also:

test n1 -ne n2 ### true if n1 not equal to n2

test n1 -gt n2 ### true if n1 greater than n2

test n1 -ge n2 ### true if n1 greater than or equal to n2

test n1 -lt n1 ### true if n1 less than n2

test n1 -le n2 ### true if n1 less than or equal to n2

Task 2.3 Create filetype script using test
Write a shell script, called filetype, which takes a single argument and determines if it is a
file or directory, or other in which case it exits. If a file it prints out if it is readable,
writeable or executable. If a directory it prints out if it is readable, writeable or searchable.

33

 2 Shell Programming

More test
• ! = test negation operator
• -a = logical and
• -o = logical or
• () for parenthesis
• [] = alternative test syntax

Negation
Unlike the shell the test command has a negation operator to invert the sense of the test.
So the shell script below prints a warning message if the filename given as an argument
does not exist.
#!/bin/sh
#cat-file.1
Make sure we have an arg
if test $# -ne 1
then
 echo Must supply one argument
 exit 1
fi
Make sure we can read it
if test ! -r $1
then
 echo $1 - cannot read
 exit 2
fi
Now we can do something with file $1 –
Let’s try cat’ing it!
cat $1
exit $?

34

2 Shell Programming

Logical "and/or" and parenthesis
The "test" command has logical "and" and "or" operators to combine conditions. The
open and closing brackets, "(" and ")", can be used for grouping tests, but as these
characters are significant to the shell they must be quoted.

And so the above can be written as ...
#!/bin/sh
#cat-file.2
if test $# -eq 1 -a \(-f "$1" -a -r "$1" \)
then
 cat $1
else
echo "Error !!"
fi

Alternative test syntax []
There is an alternative way of writing the "test" command using square brackets. The
word "test" is replaced by a [and the test condition is terminated by a]. So an equivalent
statement to check that a shell script has one argument is
#!/bin/sh
test-arg
if [$# != 1]
then
 echo Must supply one argument
 exit 1
fi

Task 2.4 Create grade script
Write a shell script called grade, using numeric tests and if/elif statements, which takes a
single numeric argument and prints out the corresponding grade based on these bands.
Produce relevant error messages for numbers less then 0, or greater than 100.
A 80 – 100

B 60 -79

C 30 – 59

D 10 – 29

E 0-9

35

 2 Shell Programming

case statement
• multiway branch statement
case string in

pattern1)
command-list

;;
pattern2)

command-list
;;
patternN)

command-list
;;

esac

case statement
The case statement matches a string against a list of patterns. If a match is found the
corresponding command list is executed. Only one pattern can be selected in the case
statement. If two or more patterns can be matched the first is selected and the
corresponding command-list executed. If no patterns are matched no command-lists will
be executed.

Each command list is terminated using two semi-colons. The pattern specification uses
the shell's pattern matching facilities - * ? and []. More than one pattern can be
associated with a command-list using the | character to separate alternate patterns. For
example the pattern

food|drink)

would match the strings "food" or "drink".

Often the last pattern in a case statement will be * which will match any string. This
provides a way of having a default action in a case statement as if none of the previous
patterns are matched, * as a final pattern will always be matched. In fact, since matches
are performed in order and * will match any string, it should only ever be used as the last
pattern !

The case statement is often clearer than a long if/elif statement, though it can only be
used if the test condition can be expressed as a pattern match. So most numeric tests or
tests of file attributes must be performed with if/elif statements.

36

2 Shell Programming

case example

#!/bin/sh # what-we-got - determine character type of first arg
case "$1" in
 [0-9]*)
 echo "$1 starts with a number"
 ;;
 [a-z]*|[A-Z]*)
 echo "$1 starts with an alphabetic"
 ;;
 *)
 echo "$1 starts with a non-numeric or alphabetic character"
 ;;
esac

37

 2 Shell Programming

what-we-got
This script uses a case statement to test what type of character a given argument starts
with. It uses the * to provide a default action if the argument does not start with a
alphabetic or numeric character.

Task 2.5 Create inspect-file script
The "file" command takes a filename as an argument and prints out the files "type". For
example,
bash$ file examples/ison
examples/ison: executable shell script
bash$ file /etc/passwd
/etc/passwd: ascii text
bash$ file /bin/cat
/bin/cat: ELF 32-bit MSB executable
bash$ file /var/adm/pacct
/var/adm/pacct: data

Write a shell script, which uses a case statement, that takes a single filename as an
argument and, using "file" to determine its "type" of the above.

Call this shell script inspect-file.

(Hint: the output of the file command can be assigned to a shell variable using command
substitution. This variable can be used as the "string" in a case statement, with the
different actions determined by an appropriate pattern).

"od" is a Unix utility which provides a file dump (numeric representation of binary data).

Task 2.6 Bonus exercise:
Add a check for the correct number of arguments and that the argument is a regular file
and readable.

If $PAGER is set use it in preference to "more", if not set default to "more".

• runs less on the file if it is "text".

• runs od "filename"| more on the file if it is "data" or an "executable".

• prints "unknown filetype" if neither.

38

2 Shell Programming

Good looking code

• start keywords on newlines
• comments
• indentation
• verbose options

Program layout
It is easier to read and debug well-presented code. Here are some tips for writing
"presentable" code:

Keyword layout
The special words the shell uses for its conditional and loop syntax
if then else elif fi for until while do done case in esac

are called keywords. The shell's keywords are only recognised after a newline or a
semicolon (the shell's statement separator). It is easier to read shell scripts which take
a newline for each shell keyword.

Comments
Good code is always "well" commented. In general a comment to say what the shell
script does is essential.

Indentation
Indenting code for each logical code block makes the code easier to understand.

Verbose options
Consider using verbose options to commands which can reduce the need for verbose
comments. For example, when listing files one might use ls --reverse rather than ls
–r

39

 0

3. Shell Programming

Section 3

40

3 Shell Programming

Looping in the Shell

• what is a loop ?
• shell loops

o for
o while
o until

Loops
Loops provide a mechanism for repeating a set of commands for a list of variables or
until a certain condition occurs. The shell provides three types of loops; for, while and
until loops.

for loop
The for loop performs actions on a predefined list of items.

while loop
The while loop performs actions whilst a condition is true.

until loop
The until loop performs actions whilst a condition is false, i.e. until it is true.

41

 3 Shell Programming

for loop

• General syntax
for var in word-list
do

command-list
done

For Loop
The for loop is useful for performing the same action on a list of items. The for loop
executes the command-list once for each "word" in the word- list. The loop variable, var,
is assigned to the next "word" each time round the loop. Each separate "word" or item in
the word-list is separated by white space. If a list item contains white space it should be
quoted to prevent it from being broken down into multiple items.

The word-list can consist of

• parameters, see section 1 on "Accessing all positional parameters".

• a constant string of text (see counting)

• filenames generated using shell pattern matching (see diffold)

• shell variables (see printargs)

• output from another command using command substitution (see find- string)

• any combination of the above

• empty !

If the "in word-list" part of the for statement is omitted then the word-list is set to the
current positional parameters - in most cases the script's command line arguments. It is
actually set to the value of "$@", ie quoted string of all the positional parameters

42

3 Shell Programming

for loop examples

#!/bin/sh
counting - count and wait
for i in one two three
do

echo $i
sleep 1

done

counting
This script is an example of a for statement in its simplest form. The word-list is a
constant list of strings. As the loop is processed var will be set in turn to "one" "two" and
then "three". The "sleep" command causes the script to pause for the specified number
of seconds.

#!/bin/sh
remindme - static reminder list
echo "remember you have to"
for Task in "Wash the dog" "Hoover the house" "Phone Aunt Flo"
do

echo $Task
done

remindme
This is another example of a for statement with a constant word-list. This time items in
the word-list have been grouped using quotes. The loop body, ie echo $Task, is
executed three times with Task set to "Wash the dog", "Hoover the house" and then
"Phone Aunt Flo". If all quotes were removed from this line the loop body would be
executed nine times - once for every word.

43

 3 Shell Programming

#!/bin/sh
filetypes - print file type of all files in current directory
for all files ...
for file in *
do

file $file
done
filetypes
In this example the word-list is generated using shell pattern matching. Since * will match
all files, the loop body is executed once for each file in the current directory. Therefore
the file command will be run on each file in the current directory in turn.
If the shell pattern match fails to select any files then the word-list is set to the actual
shell pattern match.

For example :-
#!/bin/sh #echo-a-files

for File in a*

do

 echo $File

done

will echo each filename starting with an "a". If there are no files in the current directory it
will actually echo the string "a*". It is always prudent to check the file which a shell
expansion has matched using "test -f”.

Task 3.1 Create create-logs and date-to-logs scripts
Write a shell script, called create-logs, which uses a for loop to create files called log-uno
log-dos log-tres in the current directory. (Tip The touch command will create a named file
so
bash$ touch foo

will create a file called foo).

Write a shell script, called date-to-logs, which appends the string
This command run at <date>

where <date> is the current date to all files in the current directory which start with the
string "log-".

What happens if you make a directory called log-quatro and run the script.

Delete the "log-" files - what happens if you run this script?

Modify date-to-logs to check that the file it is trying to append to is a regular file and
writeable.

44

3 Shell Programming

More for loop examples

#!/bin/sh
print-args - print the arguments !
for Arg in "$@"
do

echo $Arg
done

print-args
print-args uses a shell variable, "$@" which contains a quoted list of positional
parameters, as the word-list in its for loop. If no arguments are given to this shell script
then nothing is output, otherwise each argument is echoed back.

#!/bin/sh
show-files - run less Numbadfiles=0
for File in "$@"
do

if test -f $File -a -r $File
then

$File is a file and readable - process it
less $File

else
Badfiles="$Badfiles $File"
Numbadfiles=` expr $Numbadfiles + 1 `

fi
done
echo $Numbadfiles bad files - $Badfiles

show-files
Often the arguments given to a shell script are the names of files which are to be
processed. show-files again uses "$@" as the word list to act on each of the positional
parameters. Each argument is tested to ensure it is a file and is readable and if so the file
is viewed on the screen using the pager " less". If a given argument is not a file or is not
readable then its name is appended to the Badfiles variable and a count of the number of
bad arguments incremented. After all arguments have been processed the number and
names of bad arguments are output.

45

 3 Shell Programming

#!/bin/sh
mates - are the following people logged in
Mate_list=${Mates-"rob paul gavini"}
for Mate in $Mate_list
do

ison $Mate
done

mates
This shell script uses the ison script shown earlier to test if any of the named users are
currently using the system. Here a shell variable is used as the for loop word-list. It is set
to the value of the Mates environment variable (inherited from the calling shell) if set or
defaults to a fixed list. ison is then run for each item in the word_list.

(Default values via ${var-default} are explained in Section 1 - Default Values.)

Task 3.2 Create a numfiles-in-dirs script
Run the print-args script with the following arguments
1 2 3 4 "1 2" "2 3" `date`

Write a shell script, called numfiles-in-dirs which takes as arguments a list of directories
and prints how many files are in each directory. This script should print "appropriate"
error messages.

(Hint: "ls $Dir | wc -l" will produce a count of the number of files or directories in $Dir).

46

3 Shell Programming

Final for loop example
#!/bin/sh
find-string - find named string in files in cwd
and copy them to directory of same name
mkdir $1
for File in `grep -l $1 *`
do

cp $File $1/$File
done

find-string
This is an example of using command substitution to construct the for loop's word-list.
This script takes as an argument a string to search for in the files in the current directory.
It creates a directory of this name and copies any files which contain this string into it.
"grep -l" lists the names of files containing the string.

Bonus Exercise
This shell script could be improved by testing the number of supplied arguments (using
an if statement to test $# = 1) and a test that the mkdir succeeded.

47

 3 Shell Programming

While loop
• General Syntax

while condition
do

command-list
done

While loop
The while loop executes the loop body whilst the condition is true. The condition's value
is its return status and so as we have seen with the if statement, a return value of zero is
true and non- zero is false. Note that if the condition is never false then the loop will
never exit (unless an explicit break statement is encountered - see "Loop control" later in
this section.)

Again the condition can be any series of shell statements. The condition’s value is the
exit status of the last command executed in the condition. The while loop's condition is
often a test command.

48

3 Shell Programming

while loop examples
#!/bin/sh
watchforlogout-loops until specified user has
logged
off then prints a message
while ison $1 > /dev/null
do

sleep 60
done
echo "$1 logged off"
exit 0

watchforlogout
This script uses the "ison" script shown earlier to test if the named user is logged in. If
they are, ie ison returns 0, the loop body is executed and so the script sleeps for sixty
seconds. Once the user has logged off ison will return false, ie non- zero, and so the loop
will terminate and a message will be printed to this effect. Note again, that a redirection
to /dev/null is used to discard the unwanted output from ison, as only its return value is of
interest.

49

 3 Shell Programming

#!/bin/sh
blast-off - countdown from ten ... then !
i=10
while test $i -ge 0
do

echo $i
i=`expr $i - 1`
sleep 1

done
echo " ... we have lift off"
exit 0

blast-off
blast-off is an example of a while loop which uses expr and a numeric test to execute a
list of commands a set number of times. In other programming languages this is often
performed using a for loop, in the shell this construct is used.

Each time round the loop the variable tested in the loop condition is decremented. Once
the variable, $i, is 0 the test is no longer true and the loop terminates.

Often loops which are executed a predetermined number of times are used to process
arrays. The Bourne shell does not provide an array construct.

Contradiction: actually, though the shell does not provide arrays as a variable type (in
fact as mentioned before variables are all strings in the shell), it is possible to "kludge"
them. It is unpleasant.

50

3 Shell Programming

#!/bin/sh
wait-for-results - mail a message once
Results_file
has been created.
Results_file="results"
Pause=60
Recipient=”Joe.Bloggs@ed.ac.uk”
while test ! -f $Results_file
do

sleep $Pause
done
echo "Results have arrived" | /bin/mail $Recipient
exit $?

wait-for-results
wait-for-results is another example of a while loop which uses test as the loop's
condition. It tests for the presence of a file and if it does not exist executes the loop body.
The loop body simply simply consists of a sleep statement, in which time the desired file
may arrive. Once the file has been created the test will be false and the loop will
terminate.

Note that the first action in the script is to initialise the three "variables". None of the
variables ever change value and their literal values could be used in place of the
variables, eg

sleep 60 instead of sleep $Pause. Often shell scripts will have all the initialisation of
"constant" variables at the start. This allows the scripts behaviour to be easily modified.

Task 3.3 Create a countup script from blast-off
Use the blast-off script as a basis for a countup script which prints out the numbers from
0 to the given argument.

Modify this script to accept two numeric arguments and print out the numbers between
the two, e.g.
bash$ countup 4 6 4 5 6

51

 3 Shell Programming

Until loop
• General Syntax

until condition
do # execute commands until condition true

command-list
done

Until loop
The until loop is very like the while loop, the difference being that the body of the loop is
executed until the condition is true rather than whilst the condition is true. So condition is
evaluated and if false the loop body is executed. Once the loop condition is true the loop
terminates. until loops are generally used only when the loop condition cannot be
negated and a while loop used.

watchforlogin
#!/bin/sh # watchforlogin - loops until specified user has logged in

then print a message

until ison $1 > /dev/null

do

sleep 10

done

echo "$1 has logged in"

This script is very similar to the watchforlogout. Using the ison script and the until loop
the script loops until the the condition is true, ie the user has logged in.

Task 3.4 Modify wait-for-results script to use until loop
Modify the "wait-for-results" script to use an until loop instead of the while loop.

52

3 Shell Programming

Loop control
• break n

o terminate nth enclosing loop
• continue n

o to go next loop test (while/until) or loop item (for) in
nth enclosing loop

Break
The break command causes the enclosing loop to terminate and execution to resume
after the loop. If break is given an integer argument then this tells the break command
how many levels of nested loop to break out of.

wait-for-results-break
#!/bin/sh
wait-for-results-break- if core file present don't wait
while test ! -f results
do
 sleep ${Pause-5} # If core file present - break out
 if test -f core
 then
 break
 fi
done

This script is a shortened and modified version of the wait-for-results script. Here, in the
loop body, we test if a core file has been created and if so we break out of the loop. (A
core file is created when a program "crashes" and it contains a memory image of the
running program).

Continue
The continue command causes execution to resume at the next loop iteration. When
used in a for loop the next loop item will be processed, and in a while or until loop the
condition will be tested.

53

 3 Shell Programming

cat-non-cores
#!/bin/sh
cat-non-cores - cat files in the cwd
which are not called core
for file in *
do
 if test -f $file
 then
 if test $file = core
 then
 continue
 fi
 # process file !
 cat $file
 fi
done
This script uses a for loop to cat all files in the current directory which are not called core.
The for loop uses a wildcard of * to match all entries in the current directory. The test -f
ensures that only files are tested and if the file is called core the continue statement
causes this file to be skipped.

54

3 Shell Programming

read

• read "reads" a line of input from the standard input
• General Syntax

o read variable-list
• read can be used in a while loop to analyse a data stream

read
The read command reads one line from standard input and assigns it to the variables
named in variable-list. Most often it is used to interactively read input from the keyboard.
Where possible each word in the input is assigned to a separate variable. If fewer words
are input than variables then the extra variables are unset, even if they previously had a
value. If more words are input than variables then each variable will contain one word
except for the last variable which will contain the remainder.

Consider the script -
#!/bin/sh
read-example
initialise the variables
var1=a var1=b var3=c
read some values
read var1 var2 var3
print them out
echo var1 is $var1
echo var2 is $var2
echo var3 is $var3

Given the input:
one two three

The output is:
var1 is one var2 is two var3 is three

Given the input:
one two

The output is:
var1 is one var2 is two var3 is

and so the initial value of var3 is lost.

Finally given the input:

one two three four

The output is:
var1 is one var2 is two var3 is three four

55

 3 Shell Programming

and so var 3 is assigned to the remaining input.

Note that since all remaining input is assigned to the last variable a read with one
variable will assign all input to it. For example:

#!/bin/sh
read-a-line read a line
echo "enter a line"
read Line
echo Line is $Line

Since read takes its input from the standard input, shell redirection can cause a read to
take its input from a file.

So running the above script as :-
bash$ read-a-line < file

would read the first line of file .

return value
read returns a zero, i.e. true , return value when it is able to read some input. If no input
is available the read returns a non-zero value. A non-zero value will be returned when
reading from the keyboard (i.e. undirected standard input) if the read receives an end-
of-file, most commonly bound to control-D. When reading from a file it will return non-
zero when is there is no more data.

read as a while loop test condition
The exit status of the read command can be exploited in if statements or while loops to
analyse an entire stream of data. The stream can be generated from a file, or a
command that produces output to stdout.
#!/bin/sh

cat $FILE | while read LINE
do
 command-list
 ### we have piped the output of “cat $file” into a while loop!
 ### the read command will exit false and cause the loop to exit
 ### when it meets EOF.
 ### The loop contents are executed as a subshell
 ### - watch your environment variables!
 ### the variable LINE contains the entire current line of $FILE
done

56

3 Shell Programming

number-file
The example script below takes its argument, the name of a file, whose contents it writes
to standard output with each line prefixed by the line number. Appropriate error
messages are produced if the argument it not a file.
#!/bin/sh
number-file - print out file with line numbers
if test $# -ne 1
then
 echo usage number-file file
 exit 1
fi
if test ! \(-f $1 -a -r $1 \)
then
 echo error - $1
 exit 1
fi
Linenum=1
cat $1 | while read Line
do
 echo "$Linenum $Line" Linenum=`expr $Linenum + 1`
done
exit 0

Task 3.5 Create sumit script
Write a shell script, called sumit, which takes as input one number per line and prints out
the total.

For example,
bash$ sumit 1 5 7 2 ^D Total is 15

(Note ^D above is assumed to be the "end of file" character - try "stty -a").

Modify the script to use the supplied isnum script to ignore input which is not numeric
and to stop reading the input when it encounters an input line of "=".

57

 0

4. Shell Programming

Section 4

58

4 Shell Programming

eval & exec
• parse command twice

 eval args

• execute arguments as a command and exit
 exec args

• with no args can redirect input/output
 exec > /dev/null

eval
eval evaluates its arguments as a shell command. It is useful for causing the shell to
parse and expand a command line twice; the first time when the shell reads the
command line and the second time when the eval command is executed.
In a simple case,

#!/bin/sh # eval-input
echo -n "enter input "
read Input
eval $Input
echo Command exited $?

would output a prompt, read an input line and then evaluate it as a shell command.
The -n argument to "echo" stops the newline being output after the text.

exec
exec is similar to eval in that it reads its arguments and executes them. It does not
reparse the input to evaluate shell expansions as eval does. Its main difference is that
the command is actually executed in place of the current shell without creating a new
process - so

a script will end after the exec statement is executed.

exec with no arguments is used to redirect input or ouput. For example, the following
script uses exec to redirect its standard input from the /etc/motd file.

#!/bin/sh
exec-redirect
exec < /etc/motd
read Line
echo $Line

Task 4.1 Run eval-input script
Try running the eval-input script with the following input:
echo $TERM ls -l | wc -l ls /nofile

The example script exec-input is similar to eval-input except that the eval has been
changed to a exec. What happens when this script is run with the above input ?

59

 4 Shell Programming

Shell Functions
• Definition
name()
{

commands
}
• called as
name arg1 arg2 arg3 ...

• Arguments in function are $1 $2 $3 ...
• Functions have return values, analogously to exit status
• Functions can be exported to the environment

export –f name

Shell functions
More modern versions of the shell allow the use of functions. Shell functions are not very
sophisticated and are at best used for eliminating repetition within scripts rather than
providing true modularisation.

Shell functions are often referred to as shell subroutines or procedures.

Definition
A function’s definition starts with the function name followed by empty parentheses. The
function commands are enclosed by open and close braces ie {} . The closing brace is
only recognised after a newline or semi-colon, though the clearest way of defining a
function is shown above.

Invocation
A shell function is called simply by supplying the function name, with arguments following
the name. Within the function these arguments are available as positional parameters, ie
$1 $2 $3 ..., and the other shell variables pertaining to positional parameters are also set,
eg $# contains the number of arguments provided to the function, $@ contains all the
arguments. Outside the function, in the "main" shell script body, the positional
parameters values are unchanged.

All other shell variables are global, ie modification to a variable's value within a function
will be visible outside that function.

Return values
A shell function, like any Unix command, can return a numeric value to indicate its
success. This is done using the return command. It takes a single numeric argument
which is the function's return value. If the argument is omitted the return value of the last
command executed is used. When the return statement is encountered the shell function
exits and execution returns to the calling function or main body of the shell script.

A function must be defined before it is called.

60

4 Shell Programming

Modifying variables in functions
• $1, $2, $3…. “$@“ “$*” and $# are local copies

private to each function
• set and shift operate on the function’s private copies
• All other variables are global and public

Modifying variables in functions
Often, a shell function is required to return non- numeric values or multiple values. The
return statement is intended for indicating whether the function succeeded, not for
returning such values.

The shell does not allow the positional parameters which refer to the functions
arguments to be altered.

The positional parameter which refers to the first argument is $1. It is nonsensical to try
to assign another value to this variable (e.g. 1="value"; !).

The simplest way to change a variable's value within a shell function is to refer to the
variable name directly; since all variables are global, modifications to a variable's value
within a function will persist outwith the function.

For example consider the code below which adds one to variable i:
#!/bin/sh
#addonetoi
addonetoi() {
 i=`expr $i + 1`
}
i=1
addonetoi
echo i is $i
exit 0

Note the variable name i is hardcoded into the shell function. To alter another variable it
must be assigned to i, the function called and then its value set to i's value. Hard coding
variable names into shell functions is inflexible.

61

 4 Shell Programming

More usefully a function can return its value in a known variable. For example, below the
function “addonetoi” always returns the result in the variable “Added_one”. An extra
assignment is required to set i to its new value, though this function can now be used
with any numeric variable (see the example file addone.useful for a more useful
example).
#!/bin/sh
#addone
addone() {

Added_one=`expr $1 + 1`
}
i=1
addone $i
i=$Added_one
echo i is $i
exit 0

62

4 Shell Programming

prompt_and_get
#!/bin/sh
prompt_and_get() {

echo "$@" \\c
read Resp
if test "$Resp"
then

return 0
else

return 1
fi

}

if prompt_and_get "Please enter your name "
then

echo name is $Resp
else

echo failed to get name
fi

prompt_and_get
This script uses a shell function to prompt for some information and read the response.
The response is returned in the variable Resp. If no input is read then the function
returns 0, otherwise it returns 1. The function takes any number of arguments which are
used as the text to prompt with.

Within the function the positional parameter $@ is used to refer to the arguments and
test used to ensure that a response is given.

63

 4 Shell Programming

Task 4.2 Examine and run function example scripts
Examine and run the example shell scripts - addonetoi addone addone.useful and
prompt_and_get

Write a shell script called quiz which uses a shell functions to read t or f (standing for
true or false) in response to some given questions.

The script should use a shell-function which accepts two arguments - the first being the
prompt and the second being the correct response.

If all questions are answered correctly it should print a suitable congratulation, if any
questions are answered incorrectly it should print an error message and exit.

For example it could be run as follows ...

bash$ quiz Creamed rice is good food [t or f] f

You should never eat anything bigger than your head [t or f] t

Lager is a slimming aid [t or f] f

Well done - you're a foodie

Invent your own questions or use those in the example above.

64

4 Shell Programming

Signals & Traps
• traps allow commands to be executed on receipt of a signal
• Syntax :

trap command-list signal-list

Signals
Signals are one of the mechanisms used by Unix to alert a process to an event. Signals
are positive integers generally in the range 1 to 32 (though different versions of Unix can
extend the signal list). The most commonly used signals are

• 1 hangup
• 2 interrupt (^C at keyboard)
• 3 quit (causes core dump)
• 9 kill (cannot be caught)
• 15 terminate (die gracefully !)

Signals are most commonly produced by system events (eg logging off !) though they
can be generated by keyboard interrupts (eg ^C) or using the kill command.

The kill command's general form is
kill -signal process-id

e.g.
bash$ kill -15 121

will send the terminate signal to process 121.

Of course signals can only be sent to process which belong to you.

Traps
The trap command allows signals to be caught and specified commands executed on
their receipt. The syntax of the trap command is
trap command-list signal-list

The command-list is a single argument and is best enclosed within single quotes. The
signal- list is a space separated list of signals. The command-list is executed on receipt
of any of the signals specified on in the signal-list.

Traps are most commonly (almost exclusively !) used in shell scripts to remove
temporary or lock files when interrupted.

For example the following script removes the temporary file
#!/bin/sh
trap 'rm /tmp/tempfile.$$;echo terminating; exit 1' 1 2 3 15
touch /tmp/tempfile.$$
echo Created /tmp/tempfile.$$
while true
do ### continued on next page
 echo snoozing ...
 sleep 5
done
exit 0

65

 4 Shell Programming

Task 4.3 Examine trap-test script
Examine and run trap-test script and from another window send various signals (1 2 and
15) and note the difference.

4 Shell Programming

Shell Debugging Options
• Options

o -x print commands and args as executed
o -v print shell input as read
o -n don't run the script but check its syntax
o -u treat unset variables as errors

Bugs ... yuck
Most shell script bugs are caused by typos, either of variable names or shell reserved words
and these are usually easily found by scanning the code.

Since the shell is interpreted rather than compiled the way to find bugs is to run the script.
Unfortunately, the shell doesn't always provide the most verbose error messages. It does
provide some options which aid debugging.

Setting options
The shell options, (eg -x -v -n and -u) can be invoked be in several ways -

• in a known area which can be enclosed within set commands to turn on and off the
option (set +<option> will turn the option off.

Option explanation
-x Prints the commands and their arguments as they are executed and prefixes any
commands which are executed with a "+". It doesn't show the shell statements - ie
if/for/while... statements.

-v Prints the shell commands as they as read. Note that when a loop is encountered all
commands until the loop terminator are read before being executed.

-n Read the shell commands but do not execute them, and report syntax errors command
interpreter in the script

-u Report an error if a variable is used before being initialised. Good for spotting misspelt
variable names.

Generally using -x and -v in conjunction provide the most complete information:
bash$ sh -xv ./buggy-script1 eg prompt$ sh -x myscript

Note that the debug information which the shell provides is written to standard error and can
be redirected
bash$ sh -xv ./buggy-script1 2> tracefile

or
bash$ sh -xv ./buggy-script1 > tracefile 2>&1

The first option is most commonly used though the second can be useful when the aim is

to collect all output into tracefile.

67

 4 Shell Programming

Common bugs

• <scriptname>: No such file or directory
• 'end of file' unexpected
• watch out for subshells

<scriptname>: No such file or directory
The most likely cause of this error is the script has the command interpreter specified
wrongly, ie the file which the script cannot find is the command interpreter defined after the
#!

This error is often confused with
<scriptname>: command not found

which the shell reports when the given scriptname is not in the search path $PATH.

end-of-file unexpected
This occurs whenever the script ends before the shell encounters an expected closing
statement marker, i.e. fi or done. This can occur because the statement marker has been
misspelt or omitted or because an open quote (" ' or `) has not been closed.

Subshells
Under some circumstances the shell will invoke a subshell to process part of the shell script.
Any variables whose values are altered in this part of the script will have these changes
lost. This usually happens when a loop has its input or output redirected. To work around
this problem the variables which are altered in the loop can have their values written to
temporary files which are later read (messy !).

Task 4.4 Locating bugs in scripts
Inspect buggy-script1 buggy-script2 and buggy-script3, locate the errors using the
techniques described and correct them.

4 Shell Programming

Conclusions
• Shell good for

o acting on filesystem
o harnessing unix utilities
o grouping often used sequences of commands

• Not so good for
o numerical analysis
o anything requiring arrays
o "large" programming tasks

Shell Good ...
As we have seen the shell is a powerful programming language as well as an interactive
command interpreter. The programming constructs are designed to interface well with the
filesystem, e.g. wild-cards, and default arguments in the for loop. The real power of the shell
is in linking small specific tools (sort, grep etc ...) to create larger tools

.... But Not Always ...
There are some tasks, however, which are beyond the shell. The shell does not provide any
tools for handling numerical analysis and those utilities can be called upon to do so are
often unwieldly (eg bc !). The shell does not provide any complex data structures (in fact it
views everything as a string) so any programming task requiring arrays or
structures/records are impossible.

The shell is not "good" for large programming tasks. The shell functions do not provide true
modularisation and again the data types are missing. If truth be known most installations will
have large shell scripts which have either evolved to their current size or have been written
primarily to schedule commands and which have to perform many filesystem operations ...
bash# head -1 /usr/local/etc/backups/ backup.sh
#!/usr/local/utils/bin/bash

bash# wc -l /usr/local/etc/backups/ backup.sh 911
/usr/local/etc/backups/backup.sh

... and so Onwards ...
Where the shell fails one of the many other programming languages available for Unix will
undoubtedly succeed; IS currently runs a 1 day Perl course and a 2 day Fortran course.

	1. Shell Programming
	Section 1
	The Philosophy
	Task 1.1 Find commands that are scripts

	The Bourne Shell
	Task 1.2 Compare shell and nano sizes

	Revision – Shell metacharacters
	Revision - Shell quoting
	Revision - redirection
	Revision - command substitution
	Revision- Regexps and Filters
	What Is A Shell Script ?
	Comment and #!
	Task 1.3 Create count-users script
	Task 1.4 Modify count-users script

	Shell variables
	Shell variables
	Default Values
	Command line arguments
	Task 1.5 Create numargs script

	Accessing all positional parameters
	Set
	Task 1.6 Create last-login script
	Task 1.7 Create Percentage Script

	2. Shell Programming
	Section 2
	Task 2.1 Examine exit status $?

	if example
	Task 2.2 Create doineed script using if statement

	No shell negation
	Nesting if statements - ok !
	test command
	test conditions
	Task 2.3 Create filetype script using test

	More test
	Task 2.4 Create grade script

	case statement
	Task 2.5 Create inspect-file script
	Task 2.6 Bonus exercise:

	Good looking code

	3. Shell Programming
	Section 3
	Looping in the Shell
	for loop
	for loop examples
	Task 3.1 Create create-logs and date-to-logs scripts

	More for loop examples
	Task 3.2 Create a numfiles-in-dirs script

	Final for loop example
	While loop
	while loop examples
	Task 3.3 Create a countup script from blast-off

	Until loop
	Task 3.4 Modify wait-for-results script to use until loop

	Loop control
	read
	Task 3.5 Create sumit script

	4. Shell Programming
	Section 4
	Task 4.1 Run eval-input script

	Shell Functions
	Modifying variables in functions
	prompt_and_get
	Task 4.2 Examine and run function example scripts

	Signals & Traps
	Task 4.3 Examine trap-test script

	Shell Debugging Options
	Common bugs
	Task 4.4 Locating bugs in scripts

	Conclusions

